

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 128 (2007) 1187-1190

www.elsevier.com/locate/fluor

Practical and efficient synthesis of perfluoroalkyl iodides from perfluoroalkyl chlorides via modified sulfinatodehalogenation

Hai-Ping Cao, Qing-Yun Chen*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

> Received 7 March 2007; received in revised form 12 April 2007; accepted 15 April 2007 Available online 19 April 2007

Abstract

A novel two-step one pot synthesis of perfluoroalkyl iodides (α, ω -diiodoperfluoroalkanes) from perfluoroalkyl chlorides (α -chloro- ω -iodoperfluoroalkanes) has been developed by initial conversion to the corresponding sodium perfluoroalkanesulfinates with sodium dithionite and then subsequent oxidation by iodine.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Perfluoroalkyl iodides; Perfluoroalkyl chlorides; Sulfinatodehalogenation

1. Introduction

Perfluoroalkyl iodides (R_FI) and α,ω -diiodoperfluoroalkanes[I(CF₂)_nI, $n \ge 1$] are one of the most important, fundamental materials for preparation of other fluorinated compounds or polymers [1-4]. For example, telomerization of fluoroethylenes with R_FI as transfer agents results in the formation of fluorinated telomers. α, ω -Diiodoperfluoroalkanes can be easily converted into other bifunctional groups, such as -C2H4OH, -CH2CO2H, - $CH = CH_2 \cdots$, from which may further afford fluorinated polymers. All these are involved in many applications (aeronautics, aerospace, engineering, optics, textile finishing, microelectronics) in spite of their high price [4]. Perfluoroalkyl iodides can be prepared by Hunsdiecker's reaction, i.e. pyrolytic reaction of silver salts of perfluorocarboxylic acids in the presence of iodine [5]. The corresponding acids usually come from the electrochemical fluorination of carboxylic acids [6]. Pentafluoroethyl iodide, the most important iodide, may be simply prepared by addition-fluorination of HF/ICl to tetrafluoroethylene (TFE) [7]. However, on an industrial scale it is more effectively manufactured by the reaction TFE with I_2/IF_5 [8,9]. As compared with $R_{\rm F}I$, the synthesis of α,ω -diiodoperfluoroalkanes is more difficult and expensive. Fluorinated

E-mail address: chenqy@mail.sioc.ac.cn (Q.-Y. Chen).

telechelic diiodides can be derived from the corresponding acid chlorides (KI/200 °C), acid fluoride (KF/I₂ or LiI, >180 °C) or silver salts (I₂/200 °C) [5,10–12]. Both thermally and photochemically induced addition of iodine to TFE leads to ICF2CF2I with high yields. However, an excess of TFE under pressure at higher temperature affords higher adducts $[I(CF_2CF_2)_nI, n = 1 -$ 5] due to the known fluorinated radical β -scission [13,14]. On the other hand, per(poly)fluoroalkyl bromides and chlorides, such as R_FX , RCFX₂, RCF₂X, X(CF₂)_nX, X(CF₂)_nI (X = Cl, Br) are relatively available [15]. Among them, β -chlorotetrafluoroethyl iodide and its telomers with TFE are readily synthesized and telomerized in large scale [16,17]. It would be of interest to convert these α, ω -dihaloperfluoroalkanes into the corresponding diiodides. Based on the modified sulfinatodehalogenation method, we successfully realized this target [18]. Herein, our results are presented.

2. Results and discussion

The sulfinatodehalogenation method discovered by Huang et al. [19] and modified by us [20], has become a widely convenient initiation system not only for perfluoroalkyl iodides, bromides, R_FCCl_3 , but also for perfluoroalkyl chlorides and even nonfluorinated compounds such as ethyl dichloroacetate, CCl_3H to give the corresponding sulfinate salts in the presence of $Na_2S_2O_4/NaHCO_3$ in DMSO [20]. According to this method,

^{*} Corresponding author. Fax: +86 21 64166128.

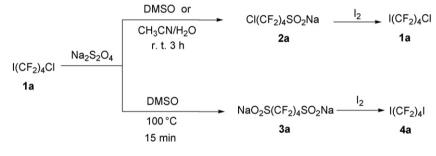
^{0022-1139/}\$ – see front matter O 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2007.04.018

we envisioned to synthesize perfluoroalkanesulfinates first, which then might be converted into the corresponding iodides. Using $I(CF_2)_4Cl$ (1a) as an example, its monosodium sulfinate (2a) and disodium sulfinate (3a) can be prepared depending on the solvent and reaction temperature used (Scheme 1).

In CH₃CN/H₂O or DMSO at room temperature for 3 h, **2a** was formed nearly quantitatively, as determined by ¹⁹F NMR spectra from the reaction of **1a** with Na₂S₂O₄ (molar ratio = 1:2). A relatively pure **2a** [only signals of ¹⁹F NMR at -68.6 ppm (2F, ClCF₂), -120.4 ppm (2F, CF₂), -121.8 ppm (2F, CF₂), -130.0 ppm (2F, CF₂SO₂Na) and no proton signals of ¹H NMR] has been isolated after sequent evaporation, extraction with ethyl acetate and evaporation. When the reaction was carried out in DMSO at higher temperature (e.g. 100 °C), the disodium salt **3a** was quickly (15 min) obtained also quantitatively as determined by its ¹⁹F NMR spectrum [with signals of ¹⁹F NMR at -122.2 ppm (4F, CF₂), -130.4 ppm (4F, CF₂SO₂Na)]. All attempts to isolate **3a** from the reaction mixture failed because of its instability.

Concerning the chemical conversion of the sulfinates, we are aware that they can react with iodine to form perfluoroalk-anesulfonyl iodides which are extremely unstable and decompose even at -30 °C to give the corresponding iodides after evolution of SO₂ [21]. This is the result that we needed.

Table 1 The reaction of **2a** with iodine^a $CI(CF_2)_4SO_2Na$ (**2a**) $\xrightarrow{I_2 \text{ oxidant}}_{I_2 \text{ oxidant}} I(CF_2)_4CI$ (**1a**)


Entry	Oxidant	Solvent	Yield ^b 60
1	None	DMSO	
2	None	HOAc	60
3	None	CH ₃ CN	60
4	None	DMSO/H ₂ O	62
5	$Na_2S_2O_8$	DMSO	61
6	$KMnO_4$	DMSO	55
7	Na ₂ S ₂ O ₈	DMSO/H ₂ O	65

^a $2a:I_2 = 1:2$, at room temperature for 1 h.

^b Isolated yield.

Thus, mixing and stirring **2a** and 2 equiv. I_2 in DMSO at room temperature for 1 h gave monoiodide **1a** in 60% yield (entry 1, Table 1). The yields were similar if acetic acid or CH₃CN was used as a solvent instead of DMSO (entries 2–3, Table 1).

Sodium perfluoroalkanesulfinates are known to be oxidized readily with various oxidants to produce perfluoroalkyl radicals [22]. We envisioned that addition of a stronger oxidant might accelerate to generate perfluoroalkyl radicals. However it was found that only a slightly better yield of **1a** (entries 5–7, Table 1) was obtained when adding an oxidant such as $Na_2S_2O_8$

Scheme 1. Sulfinatodehalogenation reaction of 1a.

 $\begin{array}{l} \text{Table 2} \\ \text{Synthesis of } R_FI \text{ via } R_FSO_2Na \\ R_FX \quad \textbf{(1)} {\longrightarrow}_{DMSO \quad (T)}^{Na_2S_2O_4} R_FSO_2Na \quad \textbf{(3)} {\longrightarrow}_{r.t. \quad (1h)}^{I_2} R_FI \quad \textbf{(4)} \end{array}$

Entry	Substrate	$T(^{\circ}C)$	$R_F SO_2 Na (\%)^a$	$R_F I (\%)^b$	$R_{F}I(\%)^{c}$
1	$I(CF_2)_4Cl$ (1a)	100	NaO ₂ S(CF ₂) ₄ SO ₂ Na (3a) (100)	$I(CF_2)_4 I$ (4a) (44)	$I(CF_2)_4 I$ (4a) (40)
2	$I(CF_2)_4Cl$ (1a)	r.t.	Cl(CF ₂) ₄ SO ₂ Na (3a ') (100)	$I(CF_2)_4Cl$ (1a) (43)	$I(CF_2)_4Cl$ (1a) (42)
3	$I(CF_2)_6Cl$ (1b)	100	NaO ₂ S(CF ₂) ₆ SO ₂ Na (3b) (100)	I(CF ₂) ₆ I (4b) (54)	I(CF ₂) ₆ I (4b) (49)
4	$I(CF_2)_6Cl$ (1b)	r.t.	$Cl(CF_2)_6SO_2Na (3b') (100)$	I(CF ₂) ₆ Cl (1b) (51)	$I(CF_2)_6Cl(1b)(50)$
5	$I(CF_2)_8Cl$ (1c)	100	$NaO_2S(CF_2)_8SO_2Na$ (3c) (100)	$I(CF_2)_8 I$ (4c) (61)	$I(CF_2)_8 I$ (4c) (55)
6	$I(CF_2)_8Cl$ (1c)	r.t.	$Cl(CF_2)_8SO_2Na (3c') (100)$	$I(CF_2)_8Cl$ (1c) (55)	$I(CF_2)_8Cl (1c) (53)$
7	F(CF ₂) ₆ Cl (1d)	100	F(CF ₂) ₆ SO ₂ Na (3d) (100)	$F(CF_2)_6I$ (4d) (40)	$F(CF_2)_6I$ (4d) (40)
8	$F(CF_2)_8Cl$ (1e)	100	$F(CF_2)_8SO_2Na (3e) (100)$	F(CF ₂) ₈ I (4e) (46)	$F(CF_2)_8 I$ (4e) (42)
9	$Br(CF_2)_6Br(1f)$	r.t.	NaO ₂ S(CF ₂) ₆ SO ₂ Na (3b) (100)	$I(CF_2)_6I$ (4b) (54)	$I(CF_2)_6 I$ (4b) (50)
10	$I(CF_2)_2O(CF_2)_2SO_2F$ (1g)	r.t.	NaO ₂ S(CF ₂) ₂ O(CF ₂) ₂ SO ₂ Na (3g) (100)	I(CF ₂) ₂ O(CF ₂) ₂ I (4g) (65)	$I(CF_2)_2O(CF_2)_2I(4g)(60)$
11	$Cl(CF_2)_8Cl(1h)$	100	$NaO_2S(CF_2)_8SO_2Na(3c)(20)$	$I(CF_2)_8 I$ (4c) (10)	$I(CF_2)_8 I$ (4c) (10)
12	$F(CF_2)_6I$ (4d)	r.t.	$F(CF_2)_6SO_2Na (3d) (100)$	F(CF ₂) ₆ I (4d) (50)	$F(CF_2)_6I$ (4d) (50)
13	$F(CF_2)_8I$ (4e)	r.t.	$F(CF_2)_8SO_2Na (3e) (100)$	F(CF ₂) ₈ I (4e) (57)	$F(CF_2)_8I$ (4e) (54)
14	CF_3Cl (1i)	80	CF ₃ SO ₂ Na (3i) (100)	$CF_{3}I(4i)(40)^{d}$	$CF_{3}I(4i)(40)^{d}$

^a $1:Na_2S_2O_4:I_2 = 1:4:4$, the conversion determined by ¹⁹F NMR.

^b $3:Na_2S_2O_8:I_2 = 1:4:4$, DMSO/H₂O (v:v = 1:1), the isolated yields based on 1.

^c $3:I_2 = 1:4$, DMSO/H₂O (v:v = 1:1), Na₂S₂O₈ was absent, the isolated yields based on 1.

^d The yield was determined by ¹⁹F NMR.

or KMnO₄ (2 equiv.) in DMSO or DMSO/H₂O (vol:vol = 1:1). The results are listed in Table 1.

Similarly, treatment of disodium sulfinate **3a** with iodine in DMSO at room temperature for 1 h, gave **4a** in a low yield (20%), but it could be improved to 44% in DMSO/H₂O (vol:vol = 1:1) for 1 h. All the results are listed in Table 2.

It is noted that compared with ICF₂CF₂I, telomerization of ICF₂CF₂Cl with TFE can be carried out more effectively due to the absence of fluorinated radical β -scission [16,17]. Telomers Cl(CF₂CF₂)_nI obtained are the starting materials in this work. They may be first fluorinated with Swartz's reagent (HF/SbCl₅) to give Cl(CF₂CF₂)_nF, which can be then converted into F(CF₂CF₂)_nI as described above (entries 7 and 8, Table 2). In this case, there is no need of IF₅ for preparing the commercial TFE-telogen CF₃CF₂I [8,9]. On the other hand, the telomers Cl(CF₂CF₂)_nI may be directly transferred to valuable α,ω -diiodoperfluoroalkanes by our method.

3. Conclusion

In summary, we have developed a practical and convenient method for converting $Cl(CF_2CF_2)_nI$ into $F(CF_2CF_2)_nI$ or $I(CF_2CF_2)_nI$ by modified sulfinatodehalogenation method (Na₂S₂O₄/DMSO). Further studies on transferring the sulfinates to other functional groups are underway in our laboratory.

4. Experimental

4.1. General

¹⁹F NMR spectra were recorded at 282 MHz. Chemical shifts were reported in parts per million relative to CFCl₃ as an external standard (positive for up field shifts) for ¹⁹F NMR. The solvent for NMR measurement was CDCl₃ unless otherwise noted. DMSO were distilled from CaH₂.

4.2. Preparation of 1,4-diiodo-1,1,2,2,3,3,4,4octafluorobutane from 1-chloro-4-iodo-1,1,2,2,3,3,4,4octafluorobutane

Under a nitrogen atmosphere, 1-chloro-4-iodo-1,1,2,2, 3,3,4,4-octafluorobutane (1a) (7.25 g, 20 mmol), Na₂S₂O₄ (13.92 g, 80 mmol) and DMSO (100 mL) was added to a 250 mL three-necked round-bottomed flask equipped with stirrer and condenser. The mixture was then heated to 100 °C for 15 min. The conversion of 1a was 100%, determined by ¹⁹F NMR spectra [signals of ¹⁹F NMR at -122.2 ppm (4F, CF₂), -130.4 ppm (4F, CF₂SO₂Na)]. After cooling, water (100 mL), Na₂S₂O₈ (19.04 g, 80 mmol) and iodine (20.32 g, 80 mmol) was added to the mixture and allowed to react at room temperature for another 1 h. The resultant solution was extracted with ether $(3 \times 30 \text{ mL})$. The combined extracts were washed with saturated sodium thiosulfate $(3 \times 30 \text{ mL})$, water $(3 \times 20 \text{ mL})$ and dried over Na₂SO₄. After removing ether, the residue was distilled to give 4a (4.0 g, 44%) as a red oil, b.p. 145 °C (lit. [23], 6063 °C/35 Torr). ¹⁹F NMR: $\delta = -58.7$ to -58.8 (m, 4F), -112.1 to -112.2 (m, 4F) (lit. [23], -65.0 (t, J = 0.2 Hz, 4F), -114.4 (t, J = 0.2 Hz, 4F)).

4b: Colorless oil. b.p. 102 °C/62 Torr (lit. [23], 80–83 °C/ 15 Torr). ¹⁹F NMR: $\delta = -56.9$ (s, 4F), -111.0 (s, 4F), -118.7 (d, J = 43.4 Hz, 4F) (lit. [23], -65.0 (t, J = 0.2 Hz, 4F), -115.0 (m, 4F), -122.4 (m, 4F)).

4c: White solid. ¹⁹F NMR: $\delta = -59.5$ (s, 4F), -113.5 (s, 4F), -121.3 (s, 4F), -122.1 (s, 4F) (lit. [23], -65.0 (t, J = 0.2 Hz, 4F), -115.0 (m, 4F), -123.3 (m, 8F)).

4d: Colorless oil. b.p. 115 °C (lit. [24], 117 °C). ¹⁹F NMR: $\delta = -59.2$ (d, J = 16.4 Hz, 2F), -80.9 (t, J = 8.0 Hz, 3F), -113.2 (s, 2F), -121.8 (s, 2F), -122.8 (s, 2F), -126.2 (s, 2F) (lit. [25], -59.9, -82.2, -114.1, -122.2, -123.6, -127.3).

4e: Colorless oil. b.p. 155 °C (lit. [24], 160–161 °C). ¹⁹F NMR: $\delta = -59.2$ (t, J = 15.9 Hz, 2F), -80.8 (s, 3F), -113.1 (s, 2F), -120.9 (s, 2F), -121.9 (s, 4F), -122.7 (s, 2F), -126.2 (s, 2F) (lit. [26], -58.6, -82.3, -113.5, -122.4, -122.4, -122.4 (4F), -126.6)

4i: ¹⁹F NMR: $\delta = -11.5$ (s, 3F) (lit. [27], -3.7 (s, 3F)).

4.3. Preparation of 1,6-diiodo-1,1,2,2,3,3,4,4,5,5,6,6dodecafluorohexane from 1,6-dibromo-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexane

A mixture of 1,6-dibromo-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexane (1f) (9.20 g, 20 mmol), $Na_2S_2O_4$ (13.92 g, 80 mmol) and DMSO (50 mL) was stirred at room temperature for 3 h under nitrogen. The conversion of 1f was 100%, determined by ¹⁹F NMR spectra [signals of ¹⁹F NMR at -121.7 ppm (4F, CF₂), -122.2 ppm (4F, CF₂), -130.6 ppm (4F, CF₂SO₂Na)]. To the content was added water (50 mL), $Na_2S_2O_8$ (19.04 g, 80 mmol) and iodine (20.32 g, 80mmol) and allowed to react at room temperature for another 1 h. The resultant solution was extracted with ether $(3 \times 30 \text{ mL})$. The combined extracts were washed with saturated sodium thiosulfate $(3 \times 30 \text{ mL})$, water $(3 \times 20 \text{ mL})$ and dried over Na₂SO₄. After removing ether, the residue was distilled to give **4b** (6.0 g, 54%) as a colorless oil, b.p. 102 °C/62 Torr (lit. [23], 80–83 °C/15 Torr). ¹⁹F NMR: $\delta = -56.9$ (s, 4F), -111.0 (s, 4F), -118.7 (d, J = 43.4 Hz, 4F) (lit. [23], -65.0 (t, J = 0.2 Hz, 4F), -115.0 (m, 4F), -122.4 (m, 4F)).

4g: Yellow oil. b.p. 135 °C (lit. [28], 135–136 °C). ¹⁹F NMR: $\delta = -65.0$ (s, 4F), -86.2 (s, 4F) (lit. [28], -65.8 (s, 4F), -88.0 (m, 4F)).

1a: Colorless oil. b.p. 101 °C (lit. [17], 104–105 °C). ¹⁹F NMR: $\delta = -59.0$ (s, 2F), -68.2 (s, 2F), -112.5 (s, 2F), -119.2 (s, 2F).

1b: Colorless oil. b.p. 63 °C/48 Torr (lit. [17], 68 °C/45 Torr). ¹⁹F NMR: $\delta = -59.1$ (s, 2F), -68.1 (t, J = 15.2 Hz, 2F), -113.1 (s, 2F), -120.2 (s, 2F), -121.0 (s, 2F), -121.2 (s, 2F).

1c: White solid. ¹⁹F NMR: $\delta = -59.1$ (s, 2F), -68.0 (t, J = 15.1 Hz, 2F), -113.1 (s, 2F), -120.1 (s, 2F), -120.9 (s, 2F), -121.1 (s, 2F), -121.7(s, 4F).

Acknowledgment

We thank the National Science Foundation of China (Nos. 20272026, D20032010 and 20532040) for financial support of this work.

References

- [1] N.O. Brace, J. Fluorine Chem. 108 (2001) 147-175.
- [2] N.O. Brace, J. Fluorine Chem. 93 (1999) 1-25;
- N.O. Brace, J. Fluorine Chem. 96 (1999) 101-127.
- [3] Z.Y. Yang, J. Fluorine Chem. 102 (2000) 239–241;
 J. Balagué, B. Améduri, B. Boutevin, G. Caporiccio, J. Fluorine Chem. 102 (2000) 239–241.
- [4] B. Améduri, B. Boutevin, J. Fluorine Chem. 100 (1999) 97-116.
- [5] M. Hauptschein, A.V. Grosse, J. Am. Chem. Soc. 73 (1951) 2461.
- [6] J.H. Hulbert, J. Electrochem. Soc. 95 (1949) 47.
- [7] R.N. Haszeldine, J. Chem. Soc. (1953) 2075–2081;
- V.A. Petrov, C.G. Krespan, J. Org. Chem. 61 (1996) 9605–9607.
- [8] M. Hauptschein, M. Braid, J. Am. Chem. Soc. 83 (1961) 2383.
- [9] R.D. Chambers, W.K.R. Musgrave, J. Savory, J. Chem. Soc. (1961) 3779.
- [10] D.E. Rice, Polym. Lett. 6 (1958) 335.
- [11] V.C.R. Mcloughlin, Tetrahedron Lett. 46 (1968) 4761;
- W.R. Dolbier, X.X. Rong, M.D. Bartberger, H. Koroniak, B.E. Smart, Z.Y. Yang, J. Chem. Soc. Perkin Trans. 2 (1998) 219.
- M.O. Riley, Y.K. Kim, O.R. Pierce, J. Fluorine Chem. 10 (1977) 85;
 H. Fukaya, E. Hayashi, Y. Hayakawa, T. Abe, J. Fluorine Chem. 81 (1997) 117.

- [13] I.L. Knunyants, L.D. Yuan, V.V. Shokina, Izv. An. SSSR. Otd. Khim. M (1961) 1462.
- [14] N.O. Brace, J. Org. Chem. 27 (1962) 3033.
- [15] M. Hudlický, A.E. Pavlath, Chemistry of Organic Fluorine Compounds II, American Chemical Society, Washington, DC, 1995.
- [16] Y.F. Zhang, C.Y. Guo, X.Y. Zhou, Q.Y. Chen, Huaxue Xuebao 40 (1982) 331–336.
- [17] Q.Y. Chen, D.B. Su, Z.Y. Yang, R.X. Zhu, J. Fluorine Chem. 36 (1987) 483–489.
- [18] Q.Y. Chen, H.P. Cao, PRC Patent 10031063 (2005).
- [19] W.Y. Huang, L. Lu, in: W.Y. Huang (Ed.), Sulfinatodehalogenation Reaction, Shanghai Science and Technology Press, Shanghai, 1996, p. 203 (Chapter 8);
- W.Y. Huang, F.H. Wu, Isr. J. Chem. 39 (1999) 167.
- [20] Z.Y. Long, Q.Y. Chen, J. Org. Chem. 64 (1999) 4775–4782;
 Z.Y. Long, Q.Y. Chen, Tetrahedron Lett. 39 (1998) 8487–8490;
 X.T. Huang, Z.Y. Long, Q.Y. Chen, J. Fluorine Chem. 111 (2001) 107–113.
- [21] W.Y. Huang, L.Q. Hu, J. Fluorine Chem. 44 (1989) 25-44.
- [22] W.Y. Huang, Y. Xie, Chin. J. Chem. 8 (1990) 362–369.
- [23] C.D. Bedford, K. Baum, J. Org. Chem. 45 (1980) 347-348.
- [24] R.N. Haszeldine, J. Chem. Soc. (1953) 3761-3766.
- [25] J. Balagué, B. Améduri, B. Boutevin, G. Caporiccio, J. Fluorine Chem. 74 (1995) 49–58.
- [26] K.C. Eapen, J. Fluorine Chem. 31 (1986) 405-416.
- [27] D.B. Su, J.X. Duan, Q.Y. Chen, Chem. Commun. 11 (1992) 807– 808.
- [28] W.Y. Huang, B.N. Huang, C.M. Hu, J. Fluorine Chem. 23 (1983) 229– 240.